Back to Search
Start Over
Abstract ND09: The discovery and characterization of CFT8634: A potent and selective degrader of BRD9 for the treatment of SMARCB1-perturbed cancers
- Source :
- Cancer Research. 82:ND09-ND09
- Publication Year :
- 2022
- Publisher :
- American Association for Cancer Research (AACR), 2022.
-
Abstract
- Introduction: The chromatin factor BRD9 is a genetic dependency in some cancers, often referred to as SMARCB1-perturbed cancers. Two types of genetic alterations result in SMARCB1 perturbation: SS18-SSX gene fusion and SMARCB1 loss-of-function mutations. In synovial sarcoma, a rare and aggressive soft tissue malignancy comprising approximately 10% of all soft tissue sarcomas, the presence of the SS18-SSX fusion gene drives the disruption of SMARCB1 function and leads to a synthetic lethal dependence on BRD9. In SMARCB1-null solid tumors, for example malignant rhabdoid tumors (MRT), poorly differentiated chordomas, and epithelioid sarcomas, the absence of SMARCB1 protein results in a similar BRD9 dependence. Thus, in SMARCB1-perturbed cancers, including synovial sarcoma and SMARCB1-null cancers, degradation of BRD9 is hypothesized to result in an anticancer effect. CFT8634 is an orally bioavailable heterobifunctional degrader that induces ternary complex formation with BRD9 and an E3 ligase, leading to the ubiquitination of BRD9 and its subsequent degradation by the proteasome. Results: Here we describe the chemical structure of CFT8634 and an overview of the medicinal chemistry path leading to its discovery. In vitro, CFT8634 promotes rapid, potent, deep, and selective degradation of BRD9 with a half-maximal degradation concentration (DC50) of 2 nM in a synovial sarcoma cell line. In long-term growth assays, CFT8634 is effective at impairing cell growth in a concentration-dependent manner specifically in SMARCB1-perturbed contexts. In vivo, oral dosing of CFT8634 in xenograft models of SMARCB1-perturbed cancers leads to robust and dose-dependent degradation of BRD9, which translates to significant and dose-dependent inhibition of tumor growth in preclinical xenograft models. Conclusion: The preclinical data presented herein support the clinical development of CFT8634 for the treatment of synovial sarcoma and SMARCB1-null tumors. Citation Format: Katrina L. Jackson, Roman V. Agafonov, Mark W. Carlson, Prasoon Chaturvedi, David Cocozziello, Kyle Cole, Richard Deibler, Scott J. Eron, Andrew Good, Ashley A. Hart, Minsheng He, Christina S. Henderson, Hongwei Huang, Marta Isasa, R. Jason Kirby, Linda Lee, Michelle Mahler, Moses Moustakim, Christopher G. Nasveschuk, Michael Palmer, Laura L. Poling, Roy M. Pollock, Matthew Schnaderbeck, Stan Spence, Gesine K. Veits, Jeremy L. Yap, Ning Yin, Rhamy Zeid, Adam S. Crystal, Andrew J. Phillips, Stewart L. Fisher. The discovery and characterization of CFT8634: A potent and selective degrader of BRD9 for the treatment of SMARCB1-perturbed cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr ND09.
- Subjects :
- Cancer Research
Oncology
Subjects
Details
- ISSN :
- 15387445
- Volume :
- 82
- Database :
- OpenAIRE
- Journal :
- Cancer Research
- Accession number :
- edsair.doi...........96b44ef5d9fa5dc56a4a294008bf6985
- Full Text :
- https://doi.org/10.1158/1538-7445.am2022-nd09