Back to Search Start Over

Salicylic acid reduces the accumulation of aluminum in Panax notoginsen root cell wall pectin via the NO signaling pathway

Authors :
Yang Xiaoyan
Qu Yuan
Wang Chengxiao
Dai Chunyan
Cui Xiuming
Yang Ye
Guo Lanping
Liu Diqiu
Source :
Plant and Soil. 430:171-184
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

Salicylic acid (SA) and nitric oxide (NO) are key signal molecules involved in the reduction of Al accumulation in many plants. The purpose of this study was to investigate whether they could reduce the root content of Al and/or its binding to the root cell wall (CW) fractions in Panax notoginseng, and to investigate the corresponding regulatory mechanisms. Effects of Al treatments on the endogenous SA and NO contents of P. notoginseng were detected. Exogenous SA and paclobutrazol (PAC, a SA synthesis inhibitor) treatments were conducted to test the effects on endogenous NO content; exogenous sodium nitroprusside (SNP, a NO doner) and 2-phenyl-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxyde (cPTIO, a NO synthesis inhibitor) treatments were conducted to test the effects on endogenous SA content. Pectin methyltransferase (PMT) and pectin methylesterase (PME) activity and the gene expression, pectin methylesterification degree (PMD), pectin content, and the accumulation of Al in roots were also studied under the treatments described above. Al stress induced a significant increase of the activity and expression of phenylalanine ammonia-lyase (PAL), and promoted the significant increase of endogenous SA content of P. notoginseng roots. The Al promoted accumulation of endogenous NO could be enhanced by exogenous SA treatment, but was reduced by PAC. Accumulation of endogenous NO that promoted by Al could be enhanced by exogenous SA treatment, but was reduced by PAC treatment. However, SNP or cPTIO treatments had no significant effect on the Al-induced endogenous SA content of P. notoginseng. This showed that NO acted downstream of SA signaling of P. notoginseng under Al stress. Al stress can increase the activity and genes expression of PME in the roots of P. notoginseng, reduce PMD, increase CW pectin content, and thus, the binding capacity of CW pectin to Al was enhanced in P. notoginseng roots. Exogenous SA or SNP both reduced the Al-binding capacity of root CW pectin by decreasing the pectin content, and increased the PMD by inhibiting the genes expression and activity of PME. The effects of PAC or cPTIO on the above-mentioned indicators under Al stress were opposite to that of exogenous SA or SNP treatments. The Al stress induced accumulation of pectin and the reduction of PMD in the root CW of P. notoginseng could be reversed by the treatments of exogenous SA or SNP, then the Al contents in root CW pectin were reduced. Al stress activated the endogenous SA and NO signaling pathways in P. notoginseng, and NO acted downstream of SA. It showed that the Al-activated NO-SA signaling pathway contributed in the reduction of Al binding to the root under Al stress.

Details

ISSN :
15735036 and 0032079X
Volume :
430
Database :
OpenAIRE
Journal :
Plant and Soil
Accession number :
edsair.doi...........96afe61a7e1223ef6e9b7a9a023db3dd