Back to Search
Start Over
Global existence and decay for a chemotaxis-growth system with generalized volume-filling effect and sublinear secretion
- Source :
- Nonlinear Differential Equations and Applications NoDEA. 24
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- This paper deals with a fully parabolic chemotaxis-growth system with generalized volume-filling effect and sublinear secretion $$\begin{aligned} \left\{ \begin{array}{ll} u_t=\nabla \cdot (\varphi (u)\nabla u)-\nabla \cdot (\psi (u)\nabla v)+ru-\mu u^{2}, &{}\quad (x,t)\in \Omega \times (0,\infty ), \\ v_{t}=\Delta v-v+g(u), &{}\quad (x,t)\in \Omega \times (0,\infty ), \end{array} \right. \end{aligned}$$ under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset \mathbb {R}^{2}\), where \(\varphi (u)\) is a nonlinear diffusion function, \(\psi (u)\) is a chemotactic sensitivity and g(u) is a production rate of the chemoattractant. Under some suitable assumptions on the nonlinearities \(\varphi (u)\), \(\psi (u)\) and g(u), we study the global boundedness and decay of solutions for the system.
- Subjects :
- Sublinear function
Applied Mathematics
010102 general mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
01 natural sciences
Omega
010101 applied mathematics
Combinatorics
Volume filling
Homogeneous
Domain (ring theory)
Neumann boundary condition
Nabla symbol
Sensitivity (control systems)
0101 mathematics
Analysis
Mathematics
Subjects
Details
- ISSN :
- 14209004 and 10219722
- Volume :
- 24
- Database :
- OpenAIRE
- Journal :
- Nonlinear Differential Equations and Applications NoDEA
- Accession number :
- edsair.doi...........968dbc70bba72e7174365aa09e5cf52b
- Full Text :
- https://doi.org/10.1007/s00030-017-0438-x