Back to Search Start Over

Repeated enrichment of trace metals and organic carbon on an Eocene high-energy shelf caused by anoxia and reworking

Authors :
Simon W. Poulton
Olaf G. Podlaha
S. van den Boorn
Sadat Kolonic
Hans-Juergen Brumsack
Christian März
Bernhard Schnetger
M. Al-Alaween
S. Aqleh
Thomas Wagner
Source :
Geology. 44:1011-1014
Publication Year :
2016
Publisher :
Geological Society of America, 2016.

Abstract

Petroleum source rocks are strongly enriched in organic carbon (OC), and their trace metal (TM) contents often reach low-grade ore levels. The mechanisms leading to these coenrichments are important for understanding how extreme environmental conditions support the formation of natural resources. We therefore studied organic-rich Eocene marls and limestones (oil shale) from the central Jordan Amzaq-Hazra subbasin, part of a Cretaceous–Paleogene shelf system along the southern Neo-Tethys margin. Geochemical analyses on two cores show highly dynamic depositional conditions, consistent with sedimentological and micropaleontological observations. Maximum and average contents, respectively, in OC (~26 and ~10 wt%), sulfur (~7 and ~2.4 wt%), phosphorus (~10 and ~2 wt%), molybdenum (>400 and ~130 ppm), chromium (>500 and ~350 ppm), vanadium (>1600 and ~550 ppm) and zinc (>3800 and ~900 ppm) are exceptional, in particular without any indication of hydrothermal or epigenetic processes. We propose a combination of two processes: physical reworking of OC- and metal-rich 30 material from locally exposed Cretaceous–Paleogene sediments (as supported by reworked nannofossils), and high marine productivity fueled by chemical remobilization of nutrients and metals on land that sustained anoxic-sulfidic conditions. Burial of high-quality organic matter (hydrogen index 600–700 mgHC/gOC) was related to strongly reducing conditions, punctuated by only short-lived oxygenation events, and to excess H2S, promoting organic matter sulfurization. These processes likely caused the OC and TM coenrichments in a high-energy shallow-marine setting that contradicts common models for black shale formation, but may explain similar geochemical patterns in other black shales.

Details

ISSN :
19432682 and 00917613
Volume :
44
Database :
OpenAIRE
Journal :
Geology
Accession number :
edsair.doi...........95f210c90947afcafddcab2f520297fe