Back to Search
Start Over
Matlis dual of local cohomology modules
- Source :
- Czechoslovak Mathematical Journal. 70:1-7
- Publication Year :
- 2019
- Publisher :
- Institute of Mathematics, Czech Academy of Sciences, 2019.
-
Abstract
- Let (R, \(\mathfrak{m}\)) be a commutative Noetherian local ring, \(\mathfrak{a}\) be an ideal of R and M a finitely generated R-module such that \(\mathfrak{a}M \ne M\) and cd(\(\mathfrak{a}\), M) — grade(\(\mathfrak{a}\), M) ⩽ 1, where cd(\(\mathfrak{a}\), M) is the cohomological dimension of M with respect to \(\mathfrak{a}\) and grade(\(\mathfrak{a}\), M) is the M-grade of \(\mathfrak{a}\). Let D(−):= HomR(−, E) be the Matlis dual functor, where E:= E(R/\(\mathfrak{m}\)) is the injective hull of the residue field R/\(\mathfrak{m}\). We show that there exists the following long exact sequence $$\begin{array}{l}{0 \longrightarrow H_{\mathfrak{a}}^{n-2}(D(H_{\mathfrak{a}}^{n-1}(M))) \longrightarrow H_{\mathfrak{a}}^{n}(D(H_{\mathfrak{a}}^{n}(M))) \longrightarrow D(M)} \\ {\quad \longrightarrow H_{\mathfrak{a}}^{n-1}(D(H_{\mathfrak{a}}^{n-1}(M))) \longrightarrow H_{\mathfrak{a}}^{n+1}(D(H_{\mathfrak{a}}^{n}(M)))} \\ {\quad \longrightarrow H_{\mathfrak{a}}^{n}(D(H_{(x_{1},\ldots, x_{n-1})}^{n-1}(M))) \longrightarrow H_{\mathfrak{a}}^{n}(D(H_{(}^{n-1} M))) \longrightarrow \cdots},\end{array}$$ where n:= cd(\(\mathfrak{a}\), M) is a non-negative integer, x1,…, xn−1 is a regular sequence in \(\mathfrak{a}\) on M and, for an R-module L, \(H_{\mathfrak{a}}^{n}(L)\) is the ith local cohomology module of L with respect to \(\mathfrak{a}\).
- Subjects :
- Exact sequence
010102 general mathematics
Local ring
Local cohomology
Cohomological dimension
01 natural sciences
Combinatorics
Mathematics::K-Theory and Homology
Residue field
Injective hull
Finitely-generated abelian group
Ideal (ring theory)
0101 mathematics
Mathematics::Representation Theory
Mathematics
Subjects
Details
- Volume :
- 70
- Database :
- OpenAIRE
- Journal :
- Czechoslovak Mathematical Journal
- Accession number :
- edsair.doi...........95d0089554415f6b0c9f056472e4d6f4
- Full Text :
- https://doi.org/10.21136/cmj.2019.0134-18