Back to Search
Start Over
Inverse lithography for 45-nm-node contact holes at 1.35 numerical aperture
- Source :
- Journal of Micro/Nanolithography, MEMS, and MOEMS. 8:043001
- Publication Year :
- 2009
- Publisher :
- SPIE-Intl Soc Optical Eng, 2009.
-
Abstract
- Inverse lithography technology (ILT) is a procedure that optimizes the mask layout to produce an image at the wafer with the targeted aerial image. For an illumination condition optimized for dense pitches, ILT inserts model-based subresolution assist features (AF) to improve the imaging of isolated features. ILT is ideal for random contact hole patterns, in which the AF are not at intuitive locations. The raw output of ILT consists of very complex smooth shapes that must be simplified for an acceptable mask write time. It is challenging for ILT to quickly converge to the ideal pattern as well as to simplify the pattern to one that can be manufactured quickly. ILT has many parameters that effect process latitude, background suppression, conversion run time, and mask write time. In this work, an optimization procedure is introduced to find the best tradeoff between image quality and run time or write time. A conversion run time reduction of 4.7× is realized with the outcome of this optimization procedure. Simulations of mask write time quantify the ability of ILT to be used for full chip applications. The optimization procedure is also applied to alternate mask technologies to reveal their advantages over commonly used 6% attenuated phase shift masks.
- Subjects :
- Computer science
business.industry
Image quality
Mechanical Engineering
Condensed Matter Physics
Chip
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
Numerical aperture
Optics
Optical proximity correction
Node (circuits)
Electrical and Electronic Engineering
Photomask
business
Lithography
Algorithm
Aerial image
Subjects
Details
- ISSN :
- 19325150
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Journal of Micro/Nanolithography, MEMS, and MOEMS
- Accession number :
- edsair.doi...........949a87815a9b63fc002e669cf1a08394
- Full Text :
- https://doi.org/10.1117/1.3263702