Back to Search Start Over

Ferritin Heavy Chain Stimulates HbS-to-HbF Switching in Erythroid Precursor Cells from Sickle Cell Patients

Authors :
Klodiana Jani
Kelly S. Williamson
Robert A. Floyd
Robert H. Broyles
Emily J. Clarkson
Sonia Levi
Marie Trudel
Austin C. Roth
Paolo Arosio
Visar Belegu
Quentin N. Pye
Paolo Santambrogio
Charles A. Stewart
Joan P. Cain
Source :
Blood. 108:790-790
Publication Year :
2006
Publisher :
American Society of Hematology, 2006.

Abstract

We have found that ferritin heavy chain (FtH), an antioxidant/stress response/iron-storage protein, localizes to the nucleus in K562 cells and represses the human adult beta-globin promoter in transient assays in primate cells (Broyles et al., PNAS98: 9145, 2001). Since other work indicates FtH is also a gene activator of fetal-globin genes, we hypothesize that FtH is a long-sought developmental hemoglobin (Hb) switching factor and that delivery of FtH to human adult erythroid cell precursors will reverse the phenotype to HbF, offering a phenotypic cure for sickle cell disease (SCD). Chromatin immunoprecipitation (ChIP) assays, antisense treatments, and an FtH transgenic mouse have confirmed that FtH is a globin gene regulatory protein in vivo. With erythroid precursor cells from pediatric SCD patients, under an IRB-approved protocol, we have used a two-phase culture system for in vitro maturation of erythroid cells in the presence of FtH, delivered to the cells as pure protein, as an expression plasmid, or as a priority inducer compound that activates the endogenous FtH gene. HPLC with a PolyCAT A column was used to separate and quantify human Hbs. With each mode of delivery, FtH stimulated a complete switch from HbS to HbF. This result was repeatable in multiple experiments using erythroid precursor cells from three different SCD donors. Fluorescently-labeled recombinant human FtH protein was taken into red cell precursors in culture, suggesting that the purified protein can be directly delivered without gene therapy. This method of producing a phenotypic cure in SCD patients should be easy and inexpensive to deliver in vivo.

Details

ISSN :
15280020 and 00064971
Volume :
108
Database :
OpenAIRE
Journal :
Blood
Accession number :
edsair.doi...........943b3371b3c84e6606822c72ec9dbc13