Back to Search Start Over

Somatic Mutations in Splicing Factor 3b, Subunit 1 (SF3B1) Are a Useful Biomarker to Differentiate Between Clonal and Non-Clonal Causes of Sideroblastic Anemia

Authors :
Karam Al-Issa
Alan E. Lichtin
Ramon V. Tiu
Mikkael A. Sekeres
Eric D. Hsi
Ali Tabarroki
Valeria Visconte
Bernard J. Silver
Heesun J. Rogers
Sudipto Mukherjee
Christopher Gerace
Source :
Blood. 124:5597-5597
Publication Year :
2014
Publisher :
American Society of Hematology, 2014.

Abstract

Background: Sideroblastic anemia (SA) can present as congenital SA (CSA), acquired clonal SA, and acquired reversible SA. Patients (pts) with SA have anemia and ring sideroblasts (RS). Acquired clonal SA is often linked to myelodysplastic syndromes (MDS) or myelodysplastic/ myeloproliferative neoplasms (MDS/MPN). Clinico-pathologic overlap features, unmet morphologic and/or cytogenetic criteria complicate the diagnosis of SA leading to delayed therapies. Currently the diagnosis of SA is based on bone marrow (BM) examination and routine blood tests. There is a need to find easily testable biomarkers that can lead to faster diagnosis of clonal and non-clonal SA. Somatic mutation in splicing factor 3b, subunit 1 (SF3B1) are frequent in MDS-RS and MDS/MPN-RS and have been closely associated with RS. Objective: SF3B1 mutations can be a useful diagnostic biomarker for pts with acquired clonal SA who present with cytopenias and/or minimal morphologic changes suspicious of MDS and MDS/MPN but not sufficient to make a definitive diagnosis. Patients and Methods: Six pts with SA at presentation and seen at Cleveland Clinic were included in this study. The median age was 38 years (range, 6-75). Blood tests and BM biopsy showed persistent anemia [Hgb, 10.5 g/dL (range, 8.8-13)], RS [numerous (3 pts), 15% (1 pt), rare (1 pt) and >15% (2 pts)], 3/6 pts had minimal erythrodysplasia with 1 pt having a mild megakaryocytic dysplasia, 3 pts had hypercellular (60-90%), 2 pts had normocellular (50%, 80%) and 1 pt had hypocellular BM (30%) for age, and < 5% BM (2%=2 pts; 1%=1 pt; 3%=1 pt). Two pts had PLT count > 400 k/uL, 3 pts had > 100 k/uL, and 1pt Results: All pts presented with sustained anemia, RS w/o or with minimal BM dysplasia, and normal karyotype. SF3B1 mutations (K666N and K700E) were detected in 2 pts (pts#2 and 6) before the clonal disease manifested. The first pt was a 75-year-old man with leukocytosis, transfusion-independent anemia, and fatigue. At the time of SF3B1 molecular testing the BM was hypercellular (60%) with Conclusion: This case series although conducted in few pts provides important insights in the diagnostic use of molecular genetics in clinical practice. Often SA pts come to the clinic with inconclusive morphologic features of MDS or MDS/MPN. The presence of SF3B1 mutations may serve as an additional tool that can help differentiating between clonal and non-clonal cases of SA. In both pts, SF3B1 mutations anticipated the subsequent overt manifestation of clinical MDS or MDS/MPN phenotype. The collection of a larger cohort of pts is ongoing in order to further confirm this finding. Disclosures No relevant conflicts of interest to declare.

Details

ISSN :
15280020 and 00064971
Volume :
124
Database :
OpenAIRE
Journal :
Blood
Accession number :
edsair.doi...........94228a01c369305aae9c1008def0df8e