Back to Search Start Over

Abstract 5469: Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer

Authors :
Lanbo Xiao
Abhijit Parolia
Yuanyuan Qiao
Pushpinder Bawa Pushpinder
Sanjana Eyunni
Rahul Mannan
Sandra E. Carson
Yu Chang
Xiaoju Wang
Yuping Zhang
Josh Vo
Steven Kregel
Stephanie A. Simko
Andrew D. Delekta
Mustapha Jaber
Heng Zheng
Ingrid Apel
Lisa McMurry
Fengyun Su
Rui Wang
Sylvia Wang
Sanjita Sasmal
Leena K. Satyam
Subhendu Mukherjee
Chandrasekhar AbbinenI
Kiran Aithal
Mital S. Bhakta
Jay Ghurye
Xuhong Cao
Nora M. Navone
Alexey Nesvizhskii
Rohit Mehra
Ulka Vaishampayan
Marco Blanchette
Yuzhuo Wang
Susanta Samajdar
Murali Ramachandra
Arul M. Chinnaiyan
Source :
Cancer Research. 82:5469-5469
Publication Year :
2022
Publisher :
American Association for Cancer Research (AACR), 2022.

Abstract

The switch/sucrose non-fermentable (SWI/SNF) complex plays a crucial role in chromatin remodeling and is recurrently altered in over 20% of human cancers. Here, we developed a proteolysis targeting chimera (PROTAC) degrader of ATPase subunits of the SWI/SNF complex, SMARCA2 and SMARCA4. Intriguingly, we found androgen receptor (AR)/forkhead box A1 (FOXA1)-positive prostate cancer to be exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to benign prostate as well as other cancer cell lines, including those with inactivating SMARCA4 mutations. Mechanistically, SWI/SNF inhibition rapidly compacts the cis-regulatory elements that are bound and activated by transcription factors that drive cancer proliferation, namely AR, FOXA1, ERG, and MYC. This ensues in chromatin untethering of these oncogenic drivers, chemical decommissioning of their core enhancer circuitry, and attenuation of downstream gene programs. Furthermore, we found SWI/SNF inhibition to disrupt super-enhancer and promoter DNA looping interactions that wire supra-physiologic expression of the AR, FOXA1, and MYC oncogenes, thereby tempering their expression in cancer cells. Monotherapy with the SMARCA2/4 degrader induced potent inhibition of tumor growth in cell line-derived xenograft models of prostate cancer and remarkably synergized with AR antagonists, inducing disease remission in models of castration-resistant prostate cancer. We also found the combinatorial treatment to significantly inhibit the growth of enzalutamide resistant disease using in vitro as well as patient-derived xenograft models. Notably, no major toxicities were seen in mice upon prolonged treatment with the SMARCA2/4 degrader, including no indications of thrombocytopenia, gastrointestinal goblet cell depletion, or germ cell degeneration. Taken together, these results suggest that impeding enhancer accessibility through SWI/SNF ATPase inactivation represents a novel therapeutic approach in enhancer addicted human cancers. Citation Format: Lanbo Xiao, Abhijit Parolia, Yuanyuan Qiao, Pushpinder Bawa Pushpinder, Sanjana Eyunni, Rahul Mannan, Sandra E. Carson, Yu Chang, Xiaoju Wang, Yuping Zhang, Josh Vo, Steven Kregel, Stephanie A. Simko, Andrew D. Delekta, Mustapha Jaber, Heng Zheng, Ingrid Apel, Lisa McMurry, Fengyun Su, Rui Wang, Sylvia Wang, Sanjita Sasmal, Leena K. Satyam, Subhendu Mukherjee, Chandrasekhar AbbinenI, Kiran Aithal, Mital S. Bhakta, Jay Ghurye, Xuhong Cao, Nora M. Navone, Alexey Nesvizhskii, Rohit Mehra, Ulka Vaishampayan, Marco Blanchette, Yuzhuo Wang, Susanta Samajdar, Murali Ramachandra, Arul M. Chinnaiyan. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5469.

Subjects

Subjects :
Cancer Research
Oncology

Details

ISSN :
15387445
Volume :
82
Database :
OpenAIRE
Journal :
Cancer Research
Accession number :
edsair.doi...........9418779f84a744dac6f9278947068d40