Back to Search Start Over

Riverbed dune morphology of the Lowermost Mississippi River – Implications of leeside slope, flow resistance and bedload transport in a large alluvial river

Authors :
Y. Jun Xu
Bo Wang
Shuaihu Wu
Heqin Cheng
Source :
Geomorphology. 385:107733
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Dunes are critical for understanding riverine sediment transport, deposition, flow resistance and channel flow processes. Although previous studies have examined the riverbed micromorphology of the Lower Mississippi River in the USA, our knowledge of detailed quantification of dune morphology in this and other large alluvial rivers is still limited. It is also not well understood how dunes in a straight channel reach and a meander bend differ in their characteristics, as well as how dune morphology may have been affected by human activities (i.e., river engineering). In this study, we utilized multi-beam bathymetric measurements over four 1.6–8.0 km long reaches in the Lowermost Mississippi River (LmMR) to analyze riverbed micromorphologic features. Three of the four reaches were located in the upper part of the LmMR between river kilometers (RK) 474–477, 483.6–485.2 and 491.7–493.3, and the other reach was located in the lower part, between RK 120 and RK 128. We analyzed a total of 3258 dunes in these river reaches and found that large dunes were dominant in the LmMR. These dunes were characterized by low mean leeside slope angle (10.8°), indicating that flow resistance caused by dunes should be relatively small. When compared with dunes in the straight reaches, dunes in the meander bends were much larger (1.06 m vs. 0.81 m) and had a higher bed roughness (0.91 vs. 0.68), which may be related to the varied flow velocity. Dune size increased with increasing water depth across the river channel of a straight reach, while it decreased with increasing water depth across the river channel of a meander bend. When compared with the dunes in the lower-river reach, the dunes in the upper-river reach were significantly higher in height and shorter in wavelength, and showed much higher bed roughness (1 vs. 0.68), which may be closely related to the greater riverbed slope and grain size of bed sediment occurred in the upper-river reach, as well as a combined effect of the Old River Control Structure (RK 500) and backwater. These findings indicate the strong impact of turbulent flow, slope and sand source on dune formation and riverbed deposition.

Details

ISSN :
0169555X
Volume :
385
Database :
OpenAIRE
Journal :
Geomorphology
Accession number :
edsair.doi...........9355262b257d96fa33289b9ed0669c44
Full Text :
https://doi.org/10.1016/j.geomorph.2021.107733