Back to Search
Start Over
Competition between two aquatic macrophytes, Lagarosiphon major (Ridley) Moss (Hydrocharitaceae) and Myriophyllum spicatum Linnaeus (Haloragaceae) as influenced by substrate sediment and nutrients
- Source :
- Aquatic Botany. 114:1-11
- Publication Year :
- 2014
- Publisher :
- Elsevier BV, 2014.
-
Abstract
- Competition between two globally economic and ecologically important submerged aquatic macrophytes, Lagarosiphon major (Rid.) Moss ex Wager and Myriophyllum spicatum L., was studied in response to growing in different substrate nutrient and sediment treatments. Addition series experiments were conducted with mixed plantings of L. major and M. spicatum grown under two soil nutrient concentrations (high vs. low) and two sediment treatments (sand vs. loam). Competitive ability of the plants was determined using an inverse linear model of the total dry weights as the yield variable. In high nutrient sediment treatments, L. major was the stronger competitor relative to M. spicatum, with one L. major plant being competitively equivalent to 2.5 M. spicatum plants in terms of their respective ability to reduce L. major biomass. In the loam sediment treatments, L. major was an even stronger competitor relative to M. spicatum with one L. major being equivalent to 10 M. spicatum plants. Additionally, L. major had a faster relative growth rate (RGR) than M. spicatum when grown in mixed cultures, a loam sediment type and at both high and low planting densities. The results indicated that L. major is a superior competitor to M. spicatum and that both nutrient and sediment conditions significantly affect the competitive ability of both species. The results contribute to the understanding of competition between submerged invasive macrophytes, and provide insight into the establishment and spread of invasive submerged macrophytes
Details
- ISSN :
- 03043770
- Volume :
- 114
- Database :
- OpenAIRE
- Journal :
- Aquatic Botany
- Accession number :
- edsair.doi...........9324df0949163267d204778baf63ec0f