Back to Search Start Over

Ancient landslide in Wanzhou District analysis from 2015 to 2018 based on ALOS-2 data by QPS-InSAR

Authors :
Changjun Huang
Qingshan Zhou
Yuanzhi Cao
Lv Zhou
Source :
Natural Hazards. 109:1777-1800
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Landslide is a global environmental geological hazard caused by natural or human activities. Since the impoundment of the Three Gorges reservoir area, the geological disasters such as collapses, landslides and other kinds of geological disasters increased obviously due to the periodic fluctuation of the water level in the Yangtze River. Wanzhou District is located in the center of the Three Gorges Reservoir Area, which plays an important role in the prevention and control of geological hazards in the whole Three Gorges Reservoir Area. This is because a large number of deep bedrocks old landslides are distributed among this region, such as Taibaiyan ancient landslide, Caojiezi ancient landslide, Anlesi ancient landslide, Pipaping ancient landslide, and Diaoyanping ancient landslide. In this study, Quasi-Persistent Scatterers InSAR (QPS-InSAR) time-series method is proposed to identify and monitor the ancient landslides in Wanzhou. In this method, the High-coherent test is applied to Quasi-Persistent Scatterers (PSC) selection, and PSC and persistent scatterer are combined to improve the density of measurement points in vegetation area. The QPS-InSAR method is also characterized by the appropriate combination of differential interferograms produced by a Minimum Spanning Tree and the employment of the phase triangulation algorithm to estimate the optimal phase. This technique was performed on 8 scenes of L-band ALOS PALSAR ascending data acquired during 2015–2018, then deformation rate maps and time series for ancient landslide were generated, which were applied to retrieve time series displacement for the large-scale landslide in Wanzhou District. The experiment results show that there are obvious landslide deformation patterns detected in this region with displacement velocity larger than − 21 mm/yr during the observation period. Finally, the influencing factors such as geological conditions, distribution of rainfall and reservoir water level change in the Three Gorges Reservoir area, and deformation mechanism of Wanzhou landslide are analyzed. The monitoring results will help the local government to carry out regular landslide inspection and strengthen landslide disaster early warning.

Details

ISSN :
15730840 and 0921030X
Volume :
109
Database :
OpenAIRE
Journal :
Natural Hazards
Accession number :
edsair.doi...........92b3b32e0234a63bfc666b12cf89d548