Back to Search
Start Over
Selective CO oxidation in the hydrogen stream over Ru/Al@Al2O3 catalysts
- Source :
- Catalysis Today. 352:148-156
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- The Al@γ-Al2O3 core-shell microstructures prepared from aluminum particles by hydrothermal surface oxidation were superior to the conventional alumina support owing to the facile heat flux through the metal-ceramic composite structures. The Ru catalysts supported on Al@γ-Al2O3 were used for the preferential CO oxidation (PROX) reaction, which is a highly exothermic reaction requiring high heat flux. For comparison, commercially available α-Al2O3 and γ-Al2O3 were also used as catalyst supports. The catalysts were characterized by N2-physisorption, X-ray diffraction, CO chemisorption, transmission electron microscopy (TEM), temperature-programmed desorption of ethanol (ethanol-TPD) and ammonia (NH3-TPD), and temperature-programmed oxidation (TPO). The Ru/α-Al2O3 catalyst with the lowest Ru dispersion showed the best PROX performance among the tested catalysts in the absence of CO2 and H2O. Even though Ru/Al@γ-Al2O3 and Ru/γ-Al2O3 had similar Ru dispersions, the former catalyst exhibited a much better PROX performance than the latter. This could be explained by the fact that the Ru metal deposited on Al@γ-Al2O3 was more resistant to surface oxidation as compared to that on γ-Al2O3, based on the TPO results. A lower desorption temperature of ethanol was observed over Al@γ-Al2O3 than over γ-Al2O3 during ethanol-TPD experiments, even though both supports had similar amounts of acid sites, as determined by NH3-TPD. Among the tested catalysts, Ru/Al@γ-Al2O3 also showed the best PROX performance in the presence of CO2 and H2O. A further enhancement in the PROX performance was achieved by increasing the Ru metal particle size from 1.4 to 2.6 nm by pretreating the Ru/Al@γ-Al2O3 catalyst with 1 mol% O2 in He at 150 ℃.
- Subjects :
- Hydrogen
Chemistry
PROX
Inorganic chemistry
chemistry.chemical_element
02 engineering and technology
General Chemistry
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Catalysis
0104 chemical sciences
Metal
Ammonia
chemistry.chemical_compound
Chemisorption
Desorption
visual_art
visual_art.visual_art_medium
0210 nano-technology
Dispersion (chemistry)
Subjects
Details
- ISSN :
- 09205861
- Volume :
- 352
- Database :
- OpenAIRE
- Journal :
- Catalysis Today
- Accession number :
- edsair.doi...........924675346a40444e6fc6dbbf7d73d394
- Full Text :
- https://doi.org/10.1016/j.cattod.2019.11.002