Back to Search
Start Over
A hybrid evolutionary algorithm with dual populations for many-objective optimization
- Source :
- CEC
- Publication Year :
- 2016
- Publisher :
- IEEE, 2016.
-
Abstract
- Many-objective optimization has posed great challenges to existing evolutionary algorithms that are designed for solving two- or three-objective problems. Most of the algorithms do not scale well with the number of objectives due to the expansion of the objective space. In this paper, a hybrid evolutionary algorithm with dual populations (HEA-DP) is proposed to tackle many-objective problems. The algorithm combines the advantages of decomposition-based and indicator-based approaches by maintaining two populations. The fitness values of individuals in the first population are determined by an aggregation function, while individuals in the second population are evaluated according to an efficient performance indicator. The information about the objective space is shared by employing a reproduction strategy that chooses parents from both populations. In this way, the algorithm can explore the objective space more thoroughly and can have more stable performance. Several state-of-the-art many-objective algorithms are adopted as peer algorithms to validate the proposed algorithm. We test the algorithms on two commonly used many-objective problem suites using different numbers of objectives. Numerical results indicate that HEA-DP is highly competitive in most of the problem instances.
- Subjects :
- Mathematical optimization
021103 operations research
business.industry
Cultural algorithm
0211 other engineering and technologies
Evolutionary algorithm
Imperialist competitive algorithm
02 engineering and technology
Machine learning
computer.software_genre
Multi-objective optimization
Hybrid algorithm
Evolutionary computation
0202 electrical engineering, electronic engineering, information engineering
Memetic algorithm
020201 artificial intelligence & image processing
Probabilistic analysis of algorithms
Artificial intelligence
business
computer
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2016 IEEE Congress on Evolutionary Computation (CEC)
- Accession number :
- edsair.doi...........915e5f1fe392cde5fa12fbbb30b5a695