Back to Search Start Over

Surface chemical and colorimetric analysis of reactively dyed cellulosic fabric. The effect of ISO 105 CO9 laundering and the implications for waste cellulosic recycling

Authors :
Chris Carr
Hongling Liu
Muriel Rigout
Peter Jeffrey Broadbent
Pendo Bigambo
Source :
Dyes and Pigments. 148:91-98
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Previous studies have established that the application of crosslinking dyes and easy care finishes to cotton can significantly reduce the dissolution of waste cotton in solvents, such as N-Methylmorpholine oxide, and limit the potential recycling of cellulosic materials through the Lyocell fibre regeneration process. In this investigation the surface chemical compositions of three reactive dyed Tencel fabrics were studied using X-ray Photoelectron Spectroscopy (XPS) and the presence of the dye at the fibre surface demonstrated. The effect of the ISO 105 C09 oxidative-bleach fading test on the azo and anthraquinone chromophoric species was established by both surface chemical and colorimetric analyses. At low dye application levels the C. I. Reactive Black 5 and C. I. Reactive Red 228 dyed fabrics (azo chromophore) exhibited obvious colour fade while the anthraquinone-based C. I. Reactive Blue 19 dyed fabric was resistant to colour fade. However it is apparent that although some of the covalently bound dye will be removed during “first life” usage, most of the reactive colorant will remain bound to the cotton and will therefore need to be stripped from the waste garments to produce a white cellulosic feedstock prior to reprocessing through Lyocell fibre regeneration. A sequential acid, alkali and peroxide treatment completely removed the azo-based C. I. Reactive Black 5 and C. I. Reactive Red 228 colorants from the dyed cotton, however, the anthraquinone-based C. I. Reactive Blue 19 was highly resistant to removal and will require alternative chemical processing to remove the colorant.

Details

ISSN :
01437208
Volume :
148
Database :
OpenAIRE
Journal :
Dyes and Pigments
Accession number :
edsair.doi...........91578d193ce8187e6fa93a9e99e9214f
Full Text :
https://doi.org/10.1016/j.dyepig.2017.08.062