Back to Search
Start Over
Paraburkholderia edwinii protects Aspergillus sp. from phenazines by acting as a toxin sponge
- Publication Year :
- 2021
- Publisher :
- Cold Spring Harbor Laboratory, 2021.
-
Abstract
- SummaryMany environmentally and clinically important fungi are sensitive to toxic, bacterially-produced, redox-active molecules called phenazines. Despite being vulnerable to phenazine-assault, fungi inhabit microbial communities that contain phenazine producers. Because many fungi cannot withstand phenazine challenge, but some bacterial species can, we hypothesized that bacterial partners may protect fungi in phenazine-replete environments. In the first soil sample we collected, we co-isolated several such physically associated pairings. We discovered the novel species Paraburkholderia edwinii and demonstrated it can protect a co-isolated Aspergillus species from phenazine-1-carboxylic acid (PCA) by sequestering it, acting as a toxin sponge; in turn, it also gains protection. When challenged with PCA, P. edwinii changes its morphology, forming aggregates within the growing fungal colony. Further, the fungal partner triggers P. edwinii to sequester PCA and maintains conditions that limit PCA toxicity by promoting an anoxic and highly reducing environment. A mutagenic screen revealed this program depends on the stress-inducible transcriptional repressor HrcA. We show that one relevant stressor in response to PCA challenge is fungal acidification and that acid stress causes P. edwinii to behave as though the fungus were present. Finally, we reveal this phenomenon as widespread among Paraburkholderia with moderate specificity among bacterial and fungal partners, including plant and human pathogens. Our discovery suggests a common mechanism by which fungi can gain access to phenazine-replete environments, and provides a tractable model system for its study. These results have implications for how rhizosphere microbial communities as well as plant and human infection sites are policed for fungal membership.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........90f96c2d15c8a4ecf75e74b4eb602c52
- Full Text :
- https://doi.org/10.1101/2021.03.28.437412