Back to Search
Start Over
Multifunctional Benzo[4,5]thieno[3,2-b]benzofuran Derivative with High Mobility and Luminescent Properties
- Source :
- ACS Applied Materials & Interfaces. 13:12250-12258
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- Development of multifunctional materials and devices has garnered enormous attention in the field of organic optoelectronics; nevertheless, achieving high mobility together with strong luminescence in a single semiconductor remains a major bottleneck. Here, a new multifunctional semiconductor molecule, 2,7-diphenylbenzo[4,5]thieno[3,2-b]benzofuran (BTBF-DPh), that integrates high charge transporting [1]benzothieno[3,2-b][1]benzothiophene with a strongly emissive furan group, is synthesized and applied in three types of optoelectronic devices, including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic phototransistors (OPTs). OLEDs based on BTBF-DPh as the emissive layer showed a blue emission with CIE coordinates of (0.151, 0.069) and a maximum current efficiency of 2.96 cd A-1 with an external quantum efficiency of 4.23%. Meanwhile, OFETs fabricated with BTBF-DPh thin film manifested a carrier mobility of 0.181 cm2 V-1 s-1, which is comparable to that of thiophene-based counterparts. Additionally, BTBF-DPh-based OPTs exhibited a maximum responsivity and detectivity of 2.07 × 103 A W-1 and of 5.6 × 1015 Jones, respectively. On the one hand, our rationally designed material, BTBF-DPh, has a dense and close-packed structure with an extended π-conjugation, facilitating charge transport through adjacent molecules. On the other hand, the weakened dipole-dipole interactions between BTBF-DPh molecules that resulted from the unambiguous J-aggregation and reduced spin-orbit coupling caused by replacing sulfur atom significantly suppress the exciton quenching, contributing to the improved photoluminescence performance. These results validate that our newly developed BTBF-DPh is a promising multifunctional organic semiconductor for optoelectronic devices.
- Subjects :
- Electron mobility
Materials science
Photoluminescence
Organic field-effect transistor
business.industry
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Organic semiconductor
chemistry.chemical_compound
Semiconductor
chemistry
Thiophene
OLED
Optoelectronics
General Materials Science
Quantum efficiency
0210 nano-technology
business
Subjects
Details
- ISSN :
- 19448252 and 19448244
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- ACS Applied Materials & Interfaces
- Accession number :
- edsair.doi...........906ef000b7c0861702641203ce8a576b