Back to Search
Start Over
Methodology for the Development of Laboratory–Based Comprehensive Foam Model for Use in the Reservoir Simulation of Enhanced Oil Recovery
- Source :
- SPE Reservoir Evaluation & Engineering. 21:344-363
- Publication Year :
- 2018
- Publisher :
- Society of Petroleum Engineers (SPE), 2018.
-
Abstract
- Summary An integrated methodology is presented for the development of a comprehensive empirical foam model based on tailored laboratory tests and representative numerical simulations that encompass processes of foam generation, coalescence, and shear thinning along with rheological characteristics and associated flow regimes. Steady-state and unsteady-state laboratory experiments of foam floods in a vertical column of sandpack with and without oil at different surfactant concentrations and at varied gas/surfactant-solution injection rates are designed, conducted, and analyzed. The logic and basis of these experiments are provided. Test results from experiments in the presence of oil provide information on the oil-induced foam/lamella coalescence functions. Unsteady-state experiments capture foam-generation and foam-dry-out phenomena, whereas steady-state experiments capture the effects of foam quality, foam velocity, and surfactant concentration. Process-based numerical simulations of these experiments are combined with basic governing analytical relationships of foam flow to provide a methodology for a comprehensive empirical foam model and to uniquely define the model parameters to preserve consistency with simulations of foam-flow processes. A procedure is presented to fully model the effect of surfactant concentration on foam strength and to quantify all concentration-function parameters, and, in particular, epsurf.
- Subjects :
- Materials science
Petroleum engineering
Energy Engineering and Power Technology
Geology
02 engineering and technology
010502 geochemistry & geophysics
01 natural sciences
Reservoir simulation
Fuel Technology
Mobility control
020401 chemical engineering
Enhanced oil recovery
0204 chemical engineering
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 19300212 and 10946470
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- SPE Reservoir Evaluation & Engineering
- Accession number :
- edsair.doi...........90281ecfc3be72159f72528b278bf4b4
- Full Text :
- https://doi.org/10.2118/181732-pa