Back to Search Start Over

Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics

Authors :
Alongkarn Chutinan
Geoffrey A. Ozin
Pratish Mahtani
Nazir P. Kherani
Keith Leong
Daniel P. Puzzo
Chen-Wei Lin
Yang Yang
Leonardo D. Bonifacio
Paul O'Brien
Source :
Solar Energy Materials and Solar Cells. 102:173-183
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Selectively-transparent and conducting photonic crystals (STCPCs) made of alternating layers of sputtered indium-tin oxide (ITO) and spin-coated silica (SiO 2 ) nanoparticle films exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200 nm. At the same time, their conductive properties are comparable to that of solid sputtered ITO films. Moreover, the average transmission of the STCPCs in the pass-band can be increased to ∼88%, or within 3.3% of the bare glass slide they are fabricated on. Furthermore, we also show that these STCPCs can readily be fabricated on textured surfaces similar to those used for micromorph solar cells. In this context wave optics analysis shows that these STCPCs can be utilized as intermediate reflectors that boost the relative photo-current generated in textured micromorph cells by more than 20% over a broad range of incident angles.

Details

ISSN :
09270248
Volume :
102
Database :
OpenAIRE
Journal :
Solar Energy Materials and Solar Cells
Accession number :
edsair.doi...........902734447b7b0e3ca971ab039e18419b