Back to Search
Start Over
Bacterial attachment on reactive ceramic ultrafiltration membranes
- Source :
- Journal of Membrane Science. 320:101-107
- Publication Year :
- 2008
- Publisher :
- Elsevier BV, 2008.
-
Abstract
- Bacterial attachment is an initial stage in biofilm formation that leads to flux decline in membrane water filtration. This study compares bacterial attachment among three photocatalytic ceramic ultrafiltration membranes for the prevention of biofilm formation. Zirconia ceramic ultrafiltration membranes were dip-coated with anatase and mixed phase titanium dioxide photocatalysts to prevent biofilm growth. The membrane surface was characterized in terms of roughness, hydrophobicity, bacterial cell adhesion, and attached cell viability, all of which are important factors in biofilm formation. The titanium dioxide coatings had minimal impact on the membrane roughness, reduced the hydrophobicity of membranes, prevented Pseudomonas putida attachment, and reduced P. putida viability. Degussa P25 is a particularly promising reactive coating because of its ease of preparation, diminished cell attachment and viability in solutions with low and high organic carbon concentrations, and reduced flux decline. These reactive membranes offer a promising strategy for fouling resistance in water filtration systems.
- Subjects :
- Chromatography
biology
Fouling
Chemistry
Biofilm
Ultrafiltration
Filtration and Separation
biology.organism_classification
Biochemistry
Pseudomonas putida
law.invention
Biofouling
chemistry.chemical_compound
Membrane
Chemical engineering
law
Titanium dioxide
General Materials Science
Physical and Theoretical Chemistry
Filtration
Subjects
Details
- ISSN :
- 03767388
- Volume :
- 320
- Database :
- OpenAIRE
- Journal :
- Journal of Membrane Science
- Accession number :
- edsair.doi...........8edb662b1051041ac970d644268c5946