Back to Search
Start Over
Convergence of the Newton-type methods for the square inverse singular value problems with multiple and zero singular values
- Source :
- Applied Numerical Mathematics. 143:172-187
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- In this paper, we study the convergence of the Newton-type methods for solving the square inverse singular value problem with possible multiple and zero singular values. Comparing with other known results, positivity assumption of the given singular values is removed. Under the nonsingularity assumption in terms of the (relative) generalized Jacobian matrices, quadratic/superlinear convergence properties (in the root-convergence sense) are proved. Moreover, numerical experiments are given to demonstrate our theoretic results.
- Subjects :
- Numerical Analysis
Generalized Jacobian
Applied Mathematics
Zero (complex analysis)
Inverse
010103 numerical & computational mathematics
Type (model theory)
01 natural sciences
Square (algebra)
010101 applied mathematics
Computational Mathematics
Singular value
Quadratic equation
Convergence (routing)
Applied mathematics
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 01689274
- Volume :
- 143
- Database :
- OpenAIRE
- Journal :
- Applied Numerical Mathematics
- Accession number :
- edsair.doi...........8ed9600dc9ebfbc255569bdc4d8a674d
- Full Text :
- https://doi.org/10.1016/j.apnum.2019.03.011