Back to Search Start Over

Reservoir-based Tracking (TRAKR) For One-shot Classification Of Neural Time-series Patterns

Authors :
Muhammad Furqan Afzal
Christian David Márton
Erin L. Rich
Helen Mayberg
Kanaka Rajan
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Neuroscience has seen a dramatic increase in the types of recording modalities and complexity of neural time-series data collected from them. The brain is a highly recurrent system producing rich, complex dynamics that result in different behaviors. Correctly distinguishing such nonlinear neural time series in real-time, especially those with non-obvious links to behavior, could be useful for a wide variety of applications. These include detecting anomalous clinical events such as seizures in epilepsy, and identifying optimal control spaces for brain machine interfaces. It remains challenging to correctly distinguish nonlinear time-series patterns because of the high intrinsic dimensionality of such data, making accurate inference of state changes (for intervention or control) difficult. Simple distance metrics, which can be computed quickly do not yield accurate classifications. On the other end of the spectrum of classification methods, ensembles of classifiers or deep supervised tools offer higher accuracy but are slow, data-intensive, and computationally expensive. We introduce a reservoir-based tool, state tracker (TRAKR), which offers the high accuracy of ensembles or deep supervised methods while preserving the computational benefits of simple distance metrics. After one-shot training, TRAKR can accurately, and in real time, detect deviations in test patterns. By forcing the weighted dynamics of the reservoir to fit a desired pattern directly, we avoid many rounds of expensive optimization. Then, keeping the output weights frozen, we use the error signal generated by the reservoir in response to a particular test pattern as a classification boundary. We show that, using this approach, TRAKR accurately detects changes in synthetic time series. We then compare our tool to several others, showing that it achieves highest classification performance on a benchmark dataset, sequential MNIST, even when corrupted by noise. Additionally, we apply TRAKR to electrocorticography (ECoG) data from the macaque orbitofrontal cortex (OFC), a higher-order brain region involved in encoding the value of expected outcomes. We show that TRAKR can classify different behaviorally relevant epochs in the neural time series more accurately and efficiently than conventional approaches. Therefore, TRAKR can be used as a fast and accurate tool to distinguish patterns in complex nonlinear time-series data, such as neural recordings.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........8e9db5265870e06c517cba7a8fe8cd12
Full Text :
https://doi.org/10.1101/2021.10.13.464288