Back to Search Start Over

Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS

Authors :
Boyan Lv
Xuebing Huang
Chenchen Lijia
Yuelong Ma
Mengmeng Bian
Zhongyan Li
Juan Duan
Fang Zhou
Bin Yang
Xingwang Qie
Yizhi Song
Thomas K. Wood
Xinmiao Fu
Source :
Proceedings of the National Academy of Sciences. 120
Publication Year :
2023
Publisher :
Proceedings of the National Academy of Sciences, 2023.

Abstract

The potentiation of antibiotics is a promising strategy for combatting antibiotic-resistant/tolerant bacteria. Herein, we report that a 5-min sublethal heat shock enhances the bactericidal actions of aminoglycoside antibiotics by six orders of magnitude against both exponential- and stationary-phase Escherichia coli . This combined treatment also effectively kills various E. coli persisters, E. coli clinical isolates, and numerous gram-negative but not gram-positive bacteria and enables aminoglycosides at 5% of minimum inhibitory concentrations to eradicate multidrug-resistant pathogens Acinetobacter baumannii and Klebsiella pneumoniae . Mechanistically, the potentiation is achieved comprehensively by heat shock-enhanced proton motive force that thus promotes the bacterial uptake of aminoglycosides, as well as by increasing irreversible protein aggregation and reactive oxygen species that further augment the downstream lethality of aminoglycosides. Consistently, protonophores, chemical chaperones, antioxidants, and anaerobic culturing abolish heat shock-enhanced aminoglycoside lethality. We also demonstrate as a proof of concept that infrared irradiation- or photothermal nanosphere-induced thermal treatments potentiate aminoglycoside killing of Pseudomonas aeruginosa in a mouse acute skin wound model. Our study advances the understanding of the mechanism of actions of aminoglycosides and demonstrates a high potential for thermal ablation in curing bacterial infections when combined with aminoglycosides.

Subjects

Subjects :
Multidisciplinary

Details

ISSN :
10916490 and 00278424
Volume :
120
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi...........8e8886bcd0cc3cc369f23b1ad8235d5c