Back to Search Start Over

Vortices and Dust Devils at Jezero crater after one year of measurements with MEDA on Mars 202

Authors :
Ricardo Hueso
Claire Newman
Teresa del Río-Gaztelurrutia
Munguira Aiser
Agustín Sánchez-Lavega
Daniel Toledo
Mark Lemmon
Germán Martínez
Ralph Lorenz
Manuel de la Torre-Juarez
Jose Antonio Rodríguez-Manfredi
Jorge Pla-García
Naomi Murdoch
Baptiste Chide
Publication Year :
2023
Publisher :
Copernicus GmbH, 2023.

Abstract

After one year of surface operations at Jezero, the MEDA meteorological sensors have captured the signals produced by the close approach of hundreds of vortices and dust devils over different seasons and terrains. Here we update findings on the vortex and Dust Devils published in Hueso et al. (JGR: Planets, 2023). That work analyzed MEDA data from spring to early autumn identifying vortices as pressure drops and later characterizing them from the ensemble of MEDA measurements. In this updated analysis we show that, in winter, declining surface temperatures and smaller vertical gradients result in a wane of vortex activity. This decreased activity affects more the frequency of intense vortices (Δp >1.5 Pa) without showing a stiff decay in the total number of vortices (Δp>0.5 Pa). In this contribution we concentrate on the specific aspects of the thermodynamics of the vortices from temperature measurements obtained by MEDA that characterize the vertical thermal gradient at the time of the vortex passage. In addition, when vortices approach the rover closely in a favorable geometry (coming from the front of the vortex) we measure the increased temperatures inside the vortex. We also explore the increased nighttime vortex activity found on some sols, when pressure drops equivalent to those created by daytime vortices appear in the early morning before sunrise, with clusters of nighttime activity in winter and early spring.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........8db90750870405374a31ba1c7caadf0b