Back to Search
Start Over
Quantifying the effect of dams in reducing global flood exposure under climate change
- Publication Year :
- 2021
- Publisher :
- Copernicus GmbH, 2021.
-
Abstract
- Flood risk was reported to increase in the future due to climate change and population growth. While recent and earlier studies have derived plausible climate change impacts on global flood risk, dams have never been explicitly implemented into simulation tools. Currently, about half of major river systems worldwide are regulated by dams and more than 3,700 major dams are planned or under construction. Consequently, to realistically assess population exposure to present and future floods, current and future dam landscapes must be integrated into existing flood modeling frameworks.In this research, the role of dams on future flood risk under climate change is quantified by simulating the global hydrological cycle, including floodplain dynamics, and considering flow regulation by dams. The global population exposed to historical once-in-100-year floods in our simulation was 9.4 million people, relatively close to the estimate of 5.6 million people indicated in a previous study (Hirabayashi et al., 2013) and the Dartmouth Flood Observatory database which estimated this number as 11.9 million people. Downstream of dams, the number of people exposed to the historical once-in-100-year floods were 7.2 and 13.4 million on average over 2006–2099 given a low and a medium-high greenhouse gas emission trajectory (RCP2.6 and RCP6.0, respectively). By the end of the 21st century, the populations exposed to flooding below dams decreased on average by 20.6% and 12. 9% for the two trajectories compared to simulations not accounting for the flow regulations produced by dams.At the catchment scale, by considering water regulation in densely populated and heavily water regulated catchments, the occurrence of flood events largely decreases compared to projections not accounting for water regulation. Over the 2070–2099 period and for 14 catchments, the annual flooded area shrank by, on average (first and third quartiles given in bracket), 22.5% (19.8–40.5) and 25.9% (12.1–34.5) for RCP2.6 and RCP6.0 respectively.To maintain the levels of flood protection that dams have provided, new dam operations will be required to offset the effect of climate change, possibly negatively affecting energy production and water storage. In addition, precise and reliable hydro-meteorological forecasts will be invaluable for enhancing flood protection and avoid excessive outflows. Given the many negative environmental and social impacts of dams, comprehensive assessments that consider both potential benefits and adverse effects are necessary for the sustainable development of water resources.
- Subjects :
- Flood myth
Environmental science
Climate change
Water resource management
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........8d47f6457bc7ec7b49e30f169a8d341e
- Full Text :
- https://doi.org/10.5194/egusphere-egu21-10453