Back to Search
Start Over
Traffic Sign Recognition with Convolutional Neural Network
- Source :
- 2021 9th International Conference on Information and Communication Technology (ICoICT).
- Publication Year :
- 2021
- Publisher :
- IEEE, 2021.
-
Abstract
- Traffic sign recognition is a computer vision technique to recognize the traffic signs put on the road. In this paper, a traffic sign dataset with approximately 5000 images is collected. This paper presents an ablation analysis of Multilayer Perceptron and Convolutional Neural Networks in traffic sign recognition. The ablation analysis studies the effects of different architectures of Multilayer Perceptron and Convolutional Neural Networks, batch normalization, and dropout. A total of 8 different models are reviewed and their performance is studied. The experimental results demonstrate that Convolutional Neural Networks outperform Multilayer Perceptron in general. Leveraging dropout layer and batch normalization is effective in improving the stability of the model and achieved 98.62% accuracy in traffic sign recognition.
- Subjects :
- Normalization (statistics)
business.industry
Computer science
Computer Science::Neural and Evolutionary Computation
Stability (learning theory)
Pattern recognition
Convolutional neural network
ComputingMethodologies_PATTERNRECOGNITION
Computer Science::Computer Vision and Pattern Recognition
Multilayer perceptron
Traffic sign recognition
Artificial intelligence
business
Traffic sign
Dropout (neural networks)
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2021 9th International Conference on Information and Communication Technology (ICoICT)
- Accession number :
- edsair.doi...........8cd19e9a92805dcbf7328146f8b0f3fd