Back to Search
Start Over
Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring pKa Effects and Demonstrating Electrocatalysis
- Source :
- Journal of the American Chemical Society. 140:6122-6129
- Publication Year :
- 2018
- Publisher :
- American Chemical Society (ACS), 2018.
-
Abstract
- Substrate selectivity in reductive multielectron/proton catalysis with small molecules such as N2, CO2, and O2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P3BFe+, for catalyzing the nitrogen reduction reaction (N2RR, N2-to-NH3 conversion) versus HER changes as a function of acid p Ka. We find that there is a strong correlation between p Ka and N2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N2 reduction (e.g., Fe(NNH) or Fe(NNH2)) in the presence of the metallocene reductant Cp*2Co. This suggests that the interaction of acid and reductant is playing a critical role in N-H bond-forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N-H bonds critical for N2RR. Furthermore, DFT studies also suggest that the observed p Ka effect on N2RR efficiency is attributable to the rate and thermodynamics of Cp*2Co protonation by the different anilinium acids. Inclusion of Cp*2Co+ as a cocatalyst in controlled potential electrolysis experiments leads to improved yields of NH3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv of NH3 per Fe at -2.1 V vs Fc+/0).
- Subjects :
- 010405 organic chemistry
Chemistry
Protonation
General Chemistry
Borane
010402 general chemistry
Electrocatalyst
01 natural sciences
Biochemistry
Medicinal chemistry
Redox
Catalysis
0104 chemical sciences
chemistry.chemical_compound
Colloid and Surface Chemistry
Selectivity
Trifluoromethanesulfonate
Metallocene
Subjects
Details
- ISSN :
- 15205126 and 00027863
- Volume :
- 140
- Database :
- OpenAIRE
- Journal :
- Journal of the American Chemical Society
- Accession number :
- edsair.doi...........8bde55679031077213ed70b93a44338c
- Full Text :
- https://doi.org/10.1021/jacs.8b02335