Back to Search
Start Over
Approximations and bounds for binary Markov random fields
- Publication Year :
- 2015
- Publisher :
- arXiv, 2015.
-
Abstract
- Discrete Markov random fields form a natural class of models to represent images and spatial data sets. The use of such models is, however, hampered by a computationally intractable normalising constant. This makes parameter estimation and a fully Bayesian treatment of discrete Markov random fields difficult. We apply approximation theory for pseudo-Boolean functions to binary Markov random fields and construct approximations and upper and lower bounds for the associated computationally intractable normalising constant. As a by-product of this process we also get a partially ordered Markov model approximation of the binary Markov random field. We present numerical examples with both the pairwise interaction Ising model and with higher-order interaction models, showing the quality of our approximations and bounds. We also present simulation examples and one real data example demonstrating how the approximations and bounds can be applied for parameter estimation and to handle a fully-Bayesian model computationally.<br />33 pages, 17 figures
- Subjects :
- FOS: Computer and information sciences
Computation (stat.CO)
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........8bd5c2b0892a92ed45c4fb40deab72e6
- Full Text :
- https://doi.org/10.48550/arxiv.1501.07414