Back to Search
Start Over
Study on electrical behaviour of copper and its alloys containing dispersed nanoparticles
- Source :
- Current Applied Physics. 19:452-457
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Nanoparticles can be added to metals to tune their properties for numerous applications. Recently extensive research has been conducted to measure the mechanical properties of nanoparticle reinforced metals. However, few theories exist to understand how nanoparticles interact with metals to affect their electrical performance, partly due to the difficulty in producing bulk metal samples, containing dispersed nanoparticles. In this work, copper and copper alloys (Cu, Cu-40 wt% Zn, and Cu-60 wt% Ag) containing dispersed tungsten carbide (WC) nanoparticles of more than 20 vol% were successfully fabricated via solidification processing. The experimental results show that copper and its alloys with an increasing volume fraction of nanoparticles, the electrical conductivity of the samples decays exponentially. Therefore, a theoretical model, compatible with the Nordheim's rule was established to predict the electrical behaviour of metals containing dispersed nanoparticles. This new model on the electrical behaviour of copper nanocomposites is experimentally validated by low-temperature resistivity measurements and electronic heat capacity measurements above Debye temperature.
- Subjects :
- Materials science
Nanocomposite
General Physics and Astronomy
Nanoparticle
chemistry.chemical_element
Copper
Metal
chemistry.chemical_compound
symbols.namesake
chemistry
Chemical engineering
Tungsten carbide
Electrical resistivity and conductivity
visual_art
Volume fraction
visual_art.visual_art_medium
symbols
General Materials Science
Debye model
Subjects
Details
- ISSN :
- 15671739
- Volume :
- 19
- Database :
- OpenAIRE
- Journal :
- Current Applied Physics
- Accession number :
- edsair.doi...........8b636d92dff81d3daf8b505807a35dcd
- Full Text :
- https://doi.org/10.1016/j.cap.2019.01.016