Back to Search Start Over

Modular Stirling Radioisotope Generator

Authors :
Paul C. Schmitz
Lee S. Mason
Nicholas A. Schifer
Source :
13th International Energy Conversion Engineering Conference.
Publication Year :
2015
Publisher :
American Institute of Aeronautics and Astronautics, 2015.

Abstract

High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and similar to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). However, the reliability should be significantly increased compared to ASRG.

Details

Database :
OpenAIRE
Journal :
13th International Energy Conversion Engineering Conference
Accession number :
edsair.doi...........8b610479360ba6fc1977d3e361d1ba43
Full Text :
https://doi.org/10.2514/6.2015-3809