Back to Search Start Over

A Stochastic Geometry Analysis for Energy-Harvesting-Based Device-to-Device Communication

Authors :
Man Chu
Junting Chen
Vincent K. N. Lau
Shuguang Cui
An Liu
Source :
IEEE Internet of Things Journal. 9:1591-1607
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

The rapidly developing energy harvesting (EH) technology is a promising solution to the durability issue in the battery-powered Internet of things (IoT) systems. In this paper, underlaid device-to-device (D2D) transmission powered by radio signals harvested from cellular systems is studied. By considering the dilemmas among energy harvesting, D2D transmission opportunity, and interference management, we propose two transmission policies: Policy 1 requires that the available power in the battery should be no less than the D2D transmission power; Policy 2 not only sets the constraint on available power, but also introduces the guard zone rule to protect D2D transmissions from severe interference. The employment of a guard zone in this situation is technically challenging since the original distribution of energy arrival will thereby be changed. We derive expressions in closed or semi-closed forms for the considered D2D transmission performance metrics with the stochastic geometry framework and Poisson hole process. With numerical simulation results, the influences of varying network parameters on D2D performances are illustrated. The results show that by introducing a guard zone, the D2D successful transmission rate can be increased by 41.2%. All the developed D2D framework and the summarized useful remarks are used to provide meaningful design insights and guidelines for the deployment strategies of EH based D2D wireless networks.

Details

ISSN :
23722541
Volume :
9
Database :
OpenAIRE
Journal :
IEEE Internet of Things Journal
Accession number :
edsair.doi...........8b2a07c4f6a9e36f9a67facff782d5d7