Back to Search Start Over

On the two-parameter Erd��s-Falconer distance problem over finite fields

Authors :
Francois, Cl��ment
Mojarrad, Hossein Nassajian
Pham, Duc Hiep
Shen, Chun-Yen
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Given $E \subseteq \mathbb{F}_q^d \times \mathbb{F}_q^d$, with the finite field $\mathbb{F}_q$ of order $q$ and the integer $d \ge 2$, we define the two-parameter distance set as $��_{d, d}(E)=\left\{\left(\|x_1-y_1\|, \|x_2-y_2\|\right) : (x_1,x_2), (y_1,y_2) \in E \right\}$. Birklbauer and Iosevich (2017) proved that if $|E| \gg q^{\frac{3d+1}{2}}$, then $ |��_{d, d}(E)| = q^2$. For the case of $d=2$, they showed that if $|E| \gg q^{\frac{10}{3}}$, then $ |��_{2, 2}(E)| \gg q^2$. In this paper, we present extensions and improvements of these results.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........8b00bc4a62eca6925b1304a8c9762689
Full Text :
https://doi.org/10.48550/arxiv.2101.10959