Back to Search
Start Over
On the two-parameter Erd��s-Falconer distance problem over finite fields
- Publication Year :
- 2021
- Publisher :
- arXiv, 2021.
-
Abstract
- Given $E \subseteq \mathbb{F}_q^d \times \mathbb{F}_q^d$, with the finite field $\mathbb{F}_q$ of order $q$ and the integer $d \ge 2$, we define the two-parameter distance set as $��_{d, d}(E)=\left\{\left(\|x_1-y_1\|, \|x_2-y_2\|\right) : (x_1,x_2), (y_1,y_2) \in E \right\}$. Birklbauer and Iosevich (2017) proved that if $|E| \gg q^{\frac{3d+1}{2}}$, then $ |��_{d, d}(E)| = q^2$. For the case of $d=2$, they showed that if $|E| \gg q^{\frac{10}{3}}$, then $ |��_{2, 2}(E)| \gg q^2$. In this paper, we present extensions and improvements of these results.
- Subjects :
- 52C10, 11T99
FOS: Mathematics
Combinatorics (math.CO)
Number Theory (math.NT)
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........8b00bc4a62eca6925b1304a8c9762689
- Full Text :
- https://doi.org/10.48550/arxiv.2101.10959