Back to Search Start Over

On the planarity and perfectness of annihilator ideal graphs

Authors :
Mohammad Javad Nikmehr
Reza Nikandish
S. M. Hosseini
Source :
Tamkang Journal of Mathematics. 50:361-369
Publication Year :
2019
Publisher :
Tamkang Journal of Mathematics, 2019.

Abstract

Let $R$ be a commutative ring with unity. The annihilator ideal graph of $R$, denoted by $\Gamma _{\mathrm{Ann}} (R) $, is a graph whose vertices are all non-trivial ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if$ I \cap \mathrm{Ann} _{R} (J) \neq \lbrace 0\rbrace $ or $J \cap \mathrm{Ann} _{R} (I) \neq \lbrace 0\rbrace $.In this paper, all rings with planar annihilator ideal graphs are classified.Furthermore, we show that all annihilator ideal graphs are perfect. Among other results, it is proved that if $\Gamma _{\mathrm{Ann}} (R) $ is a tree, then $\Gamma _{\mathrm{Ann}} (R) $ is star.

Details

ISSN :
20739826 and 00492930
Volume :
50
Database :
OpenAIRE
Journal :
Tamkang Journal of Mathematics
Accession number :
edsair.doi...........8aba79bda806e91b74fc55b489a66e8c