Back to Search Start Over

Numerical Investigation of Vibration Reduction in Multi-storey Lightweight Buildings

Authors :
Göran Sandberg
Kent Persson
Ola Flodén
Source :
Conference Proceedings of the Society for Experimental Mechanics Series ISBN: 9783319152479
Publication Year :
2015
Publisher :
Springer International Publishing, 2015.

Abstract

In order to reduce the vibration transmission in multi-storey wood buildings, it is common to insert viscoelastic elastomer materials between parts of the buildings. The studies presented here investigate to which extent different design choices for the elastomer layers affect the isolation of low-frequency vibrations (0–100 Hz). A finite element model of two storeys of a multi-storey wood building, involving blocks of elastomer material in between the storeys, was used to perform numerical investigations. Parametric studies were carried out, considering different properties of the elastomer material and different placements of the elastomer blocks. Considering the transmission from the floor of the upper storey to the underlying ceiling, the material properties of the elastomer material were found to affect the vibration levels appreciably. A too stiff elastomer material can result in an amplification of the vibration levels in the ceiling for certain frequencies, whilst a less stiff material, in general, reduces the vibration transmission. The placement of the elastomer blocks was varied by shifting the position of the blocks while maintaining their centre-to-centre distance, resulting in a small effect on the vibration levels.

Details

ISBN :
978-3-319-15247-9
ISBNs :
9783319152479
Database :
OpenAIRE
Journal :
Conference Proceedings of the Society for Experimental Mechanics Series ISBN: 9783319152479
Accession number :
edsair.doi...........8aa6bd67bca4cd50612b3b52c871f64c
Full Text :
https://doi.org/10.1007/978-3-319-15248-6_45