Back to Search
Start Over
Affine Deligne–Lusztig varieties at infinite level
- Source :
- Mathematische Annalen. 380:1801-1890
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We initiate the study of affine Deligne–Lusztig varieties with arbitrarily deep level structure for general reductive groups over local fields. We prove that for $${{\,\mathrm{GL}\,}}_n$$ and its inner forms, Lusztig’s semi-infinite Deligne–Lusztig construction is isomorphic to an affine Deligne–Lusztig variety at infinite level. We prove that their homology groups give geometric realizations of the local Langlands and Jacquet–Langlands correspondences in the setting that the Weil parameter is induced from a character of an unramified field extension. In particular, we resolve Lusztig’s 1979 conjecture in this setting for minimal admissible characters.
- Subjects :
- Pure mathematics
Conjecture
Deep level
General Mathematics
010102 general mathematics
Structure (category theory)
16. Peace & justice
01 natural sciences
Character (mathematics)
Mathematics::K-Theory and Homology
Field extension
Mathematics::Quantum Algebra
0103 physical sciences
010307 mathematical physics
Affine transformation
0101 mathematics
Variety (universal algebra)
Mathematics::Representation Theory
Mathematics
Singular homology
Subjects
Details
- ISSN :
- 14321807 and 00255831
- Volume :
- 380
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen
- Accession number :
- edsair.doi...........8a46060a3ff42915394c8f29781e7f47
- Full Text :
- https://doi.org/10.1007/s00208-020-02092-4