Back to Search Start Over

Affine Deligne–Lusztig varieties at infinite level

Authors :
Alexander B. Ivanov
Charlotte Chan
Source :
Mathematische Annalen. 380:1801-1890
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

We initiate the study of affine Deligne–Lusztig varieties with arbitrarily deep level structure for general reductive groups over local fields. We prove that for $${{\,\mathrm{GL}\,}}_n$$ and its inner forms, Lusztig’s semi-infinite Deligne–Lusztig construction is isomorphic to an affine Deligne–Lusztig variety at infinite level. We prove that their homology groups give geometric realizations of the local Langlands and Jacquet–Langlands correspondences in the setting that the Weil parameter is induced from a character of an unramified field extension. In particular, we resolve Lusztig’s 1979 conjecture in this setting for minimal admissible characters.

Details

ISSN :
14321807 and 00255831
Volume :
380
Database :
OpenAIRE
Journal :
Mathematische Annalen
Accession number :
edsair.doi...........8a46060a3ff42915394c8f29781e7f47
Full Text :
https://doi.org/10.1007/s00208-020-02092-4