Back to Search Start Over

Efficient target acceleration using underwater electrical explosion of wire array

Authors :
Ya. E. Krasik
Sergey Efimov
D. Maler
A. Rososhek
Alexander Virozub
Source :
Journal of Applied Physics. 129:034901
Publication Year :
2021
Publisher :
AIP Publishing, 2021.

Abstract

The results of experimental studies together with numerical and analytical modeling showed that the acceleration of a target by employing the shock compression and water flow generated by the underwater electrical explosion of a wire array can be considered an efficient (up to ∼20%) approach. In experiments, a pulse generator with stored energy of ∼6.5 kJ, current amplitude of ∼380 kA, and rise time of ∼1.2 μs was used for underwater electrical explosion of a copper wire planar array. Streak shadow imaging and photonic Doppler velocimetry were applied to study the time-resolved velocity of the shock in water and an aluminum target in air, respectively. The targets, having different thicknesses and designs, were positioned at variable distances from the array. Experimental results showed that the target velocity evolution is characterized by an ns-timescale rise time peak with a subsequent decrease, which transfers to a μs-timescale increase up to its saturated value. Target velocities of up to 1360 m / s were measured. The experimental, numerical, and analytical modeling results showed that a temporally unmovable barrier, located between the exploding array and the target, allows one to increase the pressure in that location, which leads to higher shock velocity in the target.

Details

ISSN :
10897550 and 00218979
Volume :
129
Database :
OpenAIRE
Journal :
Journal of Applied Physics
Accession number :
edsair.doi...........8a416bf5bb590765367e21356653e8b8
Full Text :
https://doi.org/10.1063/5.0034435