Back to Search Start Over

Atomic-scale in situ observation of electron beam and heat induced crystallization of Ge nanoparticles and transformation of Ag@Ge core-shell nanocrystals

Authors :
Xiao Qi
Karen C. Bustillo
Susan M. Kauzlarich
Source :
The Journal of Chemical Physics. 158
Publication Year :
2023
Publisher :
AIP Publishing, 2023.

Abstract

Crystallization of amorphous materials by thermal annealing has been investigated for numerous applications in the fields of nanotechnology, such as thin-film transistors and thermoelectric devices. The phase transition and shape evolution of amorphous germanium (Ge) and Ag@Ge core–shell nanoparticles with average diameters of 10 and 12 nm, respectively, were investigated by high-energy electron beam irradiation and in situ heating within a transmission electron microscope. The transition of a single Ge amorphous nanoparticle to the crystalline diamond cubic structure at the atomic scale was clearly demonstrated. Depending on the heating temperature, a hollow Ge structure can be maintained or transformed into a solid Ge nanocrystal through a diffusive process during the amorphous to crystalline phase transition. Selected area diffraction patterns were obtained to confirm the crystallization process. In addition, the thermal stability of Ag@Ge core–shell nanoparticles with an average core of 7.4 and a 2.1 nm Ge shell was studied by applying the same beam conditions and temperatures. The results show that at a moderate temperature (e.g., 385 °C), the amorphous Ge shell can completely crystallize while maintaining the well-defined core–shell structure, while at a high temperature (e.g., 545 °C), the high thermal energy enables a freely diffusive process of both Ag and Ge atoms on the carbon support film and leads to transformation into a phase segregated Ag–Ge Janus nanoparticle with a clear interface between the Ag and Ge domains. This study provides a protocol as well as insight into the thermal stability and strain relief mechanism of complex nanostructures at the single nanoparticle level with atomic resolution.

Details

ISSN :
10897690 and 00219606
Volume :
158
Database :
OpenAIRE
Journal :
The Journal of Chemical Physics
Accession number :
edsair.doi...........898db294e19527806948d529a80bfd2b
Full Text :
https://doi.org/10.1063/5.0144742