Back to Search Start Over

Anti-CD3 treatment up-regulates programmed cell death protein-1 expression on activated effector T cells and severely impairs their inflammatory capacity

Authors :
Wallberg, M
Recino, A
Phillips, J
Howie, D
Vienne, M
Paluch, C
Azuma, M
Wong, FS
Waldmann, H
Cooke, A
Publisher :
Wiley

Abstract

T cells play a key role in the pathogenesis of type 1 diabetes, and targeting the CD3 component of the T-cell receptor complex provides one therapeutic approach. Anti-CD3 treatment can reverse overt disease in spontaneously diabetic non-obese diabetic mice, an effect proposed to, at least in part, be caused by a selective depletion of pathogenic cells. We have used a transfer model to further investigate the effects of anti-CD3 treatment on green fluorescent protein (GFP)+ islet-specific effector T cells in vivo. The GFP expression allowed us to isolate the known effectors at different time-points during treatment to assess cell presence in various organs as well as gene expression and cytokine production. We find, in this model, that anti-CD3 treatment does not preferentially deplete the transferred effector cells, but instead inhibits their metabolic function and their production of interferon-γ. Programmed cell death protein 1 (PD-1) expression was up-regulated on the effector cells from anti-CD3-treated mice, and diabetes induced through anti-PD-L1 antibody could only be reversed with anti-CD3 antibody if the anti-CD3 treatment lasted beyond the point when the anti-PD-L1 antibody was washed out of the system. This suggests that PD-1/PD-L1 interaction plays an important role in the anti-CD3 antibody mediated protection. Our data demonstrate an additional mechanism by which anti-CD3 therapy can reverse diabetogenesis.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi...........893d9552053580a3c13e65bafc74cd14