Back to Search
Start Over
DeepLoRa
- Source :
- MobiHoc
- Publication Year :
- 2021
- Publisher :
- ACM, 2021.
-
Abstract
- The Long Range (LoRa) protocol for low-power wide-area networks (LPWANs) is a strong candidate to enable the massive roll-out of the Internet of Things (IoT) because of its low cost, impressive sensitivity (-137dBm), and massive scalability potential. As tens of thousands of tiny LoRa devices are deployed over large geographic areas, a key component to the success of LoRa will be the development of reliable and robust authentication mechanisms. To this end, Radio Frequency Fingerprinting (RFFP) through deep learning (DL) has been heralded as an effective zero-power supplement or alternative to energy-hungry cryptography. Existing work on LoRa RFFP has mostly focused on small-scale testbeds and low-dimensional learning techniques; however, many challenges remain. Key among them are authentication techniques robust to a wide variety of channel variations over time and supporting a vast population of devices. In this work, we advance the state of the art by presenting (i) the first massive experimental evaluation of DL RFFP and (ii) new data augmentation techniques for LoRa designed to counter the degradation introduced by the wireless channel. Specifically, we collected and publicly shared more than 1TB of waveform data from 100 bit-similar devices (with identical manufacturing processes) over different deployment scenarios (outdoor vs. indoor) and spanning several days. We train and test diverse DL models (convolutional and recurrent neural networks) using either preamble or payload data slices. We compare three different representations of the received signal: (i) IQ, (ii) amplitude-phase, and (iii) spectrogram. Finally, we propose a novel data augmentation technique called DeepLoRa to enhance the LoRa RFFP performance. Results show that (i) training the CNN models with IQ representation is not always the best combo in fingerprinting LoRa radios; training CNNs and RNN-LSTMs with amplitude-phase and spectrogram representations may increase the fingerprinting performance in small and medium-scale testbeds; (ii) using only payload data in the fingerprinting process outperforms preamble only data, and (iii) DeepLoRa data augmentation technique improves the classification accuracy from 19% to 36% in the RFFP challenging case of training on data collected on a different day than the testing data. Moreover, DeepLoRa raises the accuracy from 82% to 91% when training and testing 100 devices with data collected on the same day.
Details
- Database :
- OpenAIRE
- Journal :
- Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing
- Accession number :
- edsair.doi...........891e852e867f397492670f79fd251751