Back to Search Start Over

Combining paper cooperative network and topic model for expert topic analysis and extraction

Authors :
Xian Li
Zhengtao Yu
Yang Zhang
Yu Qin
Shengxiang Gao
Source :
Neurocomputing. 257:136-143
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Paper cooperation network embodies expert topic similarity in an extent, thus, a novel method is proposed for expert topic analysis and extraction by combining paper cooperation network and topic model. In the method, we extract each paper’ author information and construct an expert cooperation network. At the same time, by means of LDA model, a probabilistic topic model is also built to analyze papers’ latent topics. Then, by making full use of the feature that adjacent nodes in the expert cooperation network share similar themes distribution, we makes a constraint on expert topic distribution in Gibbs sampling process of solving the probabilistic topic model. Experimental results on NIPS dataset show that the proposed method can effectively extract expert topics, and the expert paper cooperation network plays a very good supporting role on the extracting task.

Details

ISSN :
09252312
Volume :
257
Database :
OpenAIRE
Journal :
Neurocomputing
Accession number :
edsair.doi...........8913e8afa38c8a6ba925719635c32146