Back to Search Start Over

Maize Morphophysiological Responses to Intense Crowding and Low Nitrogen Availability: An Analysis and Review

Authors :
Judith B. Santini
Christopher Boomsma
Tony J. Vyn
Matthijs Tollenaar
Source :
Agronomy Journal. 101:1426-1452
Publication Year :
2009
Publisher :
Wiley, 2009.

Abstract

Mounting concerns over the cost and environmental impact of N fertilizer combined with progressively higher plant densities in maize (Zea mays L.) production systems make progress in maize N use efficiency (NUE) and N stress tolerance essential. The primary objectives of this 3-yr field study were to (i) evaluate the N responsiveness, NUE, and N stress tolerance of multiple modern maize genotypes using suboptimal, optimal, and supraoptimal plant densities (54,000,79,000, and 104,000 plants ha -1 , respectively) with three levels of side-dress N (0, 165, and 330 kg N ha -1 ), (ii) identify key morphophysiological responses to the simultaneous stresses of intense crowding and low N availability, and (iii) consider our results with extensive reference to literature on maize morphophysiological responses to plant crowding and N availability. At optimal and supraoptimal plant densities, maize receiving 165 kg ha -1 of side-dress N displayed strong N responsiveness, high NUE, pronounced crowding tolerance, and plant density independence. However, crowding tolerance was contingent on N application. Relative to less crowded, N-fertilized environments, the 104,000 plants ha -1 , 0 kg N ha-1 treatment combination exhibited (i) reduced pre- and postanthesis plant height (PHT), stem diameter (SD), and total biomass; (ii) greater preflowering leaf senescence and lower R1 leaf areas at individual-leaf, per-plant, and canopy levels; (iii) enhanced floral protandry; (iv) lower pre- and postanthesis leaf-chlorophyll content; (v) lower per-plant kernel number (KN P ), individual kernel weight (KW), grain yield per plant (GYp), andharvest index per plant (HI P ); and (vi) enhanced per-plant grain yield variability (GY CV ). Genetic efforts to improve high plant density tolerance should, therefore, simultaneously focus on enhancing NUE and N stress tolerance.

Details

ISSN :
14350645 and 00021962
Volume :
101
Database :
OpenAIRE
Journal :
Agronomy Journal
Accession number :
edsair.doi...........88ec690af855144865615433c6f52ff5