Back to Search Start Over

Profiling tropospheric CO2 using Aura TES and TCCON instruments

Authors :
Yuk L. Yung
S. C. Wofsy
James B. Abshire
Meemong Lee
B. J. Connor
Le Kuai
Christian Frankenberg
John Worden
Sébastien C. Biraud
Vijay Natraj
Debra Wunch
Run-Lie Shia
Susan S. Kulawik
Kevin W. Bowman
Charles E. Miller
Coleen M. Roehl
Source :
Atmospheric Measurement Techniques. 6:63-79
Publication Year :
2013
Publisher :
Copernicus GmbH, 2013.

Abstract

Monitoring the global distribution and long-term variations of CO2 sources and sinks is required for characterizing the global carbon budget. Total column measurements are useful for estimating regional-scale fluxes; however, model transport remains a significant error source, particularly for quantifying local sources and sinks. To improve the capability of estimating regional fluxes, we estimate lower tropospheric CO2 concentrations from ground-based near-infrared (NIR) measurements with space-based thermal infrared (TIR) measurements. The NIR measurements are obtained from the Total Carbon Column Observing Network (TCCON) of solar measurements, which provide an estimate of the total CO2 column amount. Estimates of tropospheric CO2 that are co-located with TCCON are obtained by assimilating Tropospheric Emission Spectrometer (TES) free tropospheric CO2 estimates into the GEOS-Chem model. We find that quantifying lower tropospheric CO2 by subtracting free tropospheric CO2 estimates from total column estimates is a linear problem, because the calculated random uncertainties in total column and lower tropospheric estimates are consistent with actual uncertainties as compared to aircraft data. For the total column estimates, the random uncertainty is about 0.55 ppm with a bias of −5.66 ppm, consistent with previously published results. After accounting for the total column bias, the bias in the lower tropospheric CO2 estimates is 0.26 ppm with a precision (one standard deviation) of 1.02 ppm. This precision is sufficient for capturing the winter to summer variability of approximately 12 ppm in the lower troposphere; double the variability of the total column. This work shows that a combination of NIR and TIR measurements can profile CO2 with the precision and accuracy needed to quantify lower tropospheric CO2 variability.

Details

ISSN :
18678548
Volume :
6
Database :
OpenAIRE
Journal :
Atmospheric Measurement Techniques
Accession number :
edsair.doi...........88965f3358c6f343d3bee369b89fd1f8