Back to Search
Start Over
Reversible solid-state phase transitions in confined two-layer colloidal crystals
- Source :
- Colloid and Polymer Science. 298:1611-1617
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Using a combination of fluorescence and bright-field optical imaging, the solid-state packing structures of semi-confined two-layer spherical colloidal crystals were observed during modulation of an external AC electric field. Upon increasing field strength, the bottom layer of colloids (layer 1) transitioned from the entropically favored hexagonal packing structure with p6m symmetry to a square-packing structure with p4m symmetry. The packing structure of layer 2 was determined by the packing structure of layer 1, with layer 2 particles resting in, and moving in registry with, the low-energy interstitial sites of layer 1. Modulation of the field strength thus resulted in a reversible transition between a face-centered cubic crystal structure and a body-centered cubic crystal structure at low and high field strengths, respectively. These structures were found to be sensitive to the particle density in the wells, with vacancies and insertions leading to the formation of mixed crystal phases at high field strengths.
- Subjects :
- Phase transition
Materials science
Polymers and Plastics
Field strength
02 engineering and technology
Colloidal crystal
Cubic crystal system
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Colloid and Surface Chemistry
Chemical physics
Electric field
Interstitial defect
Materials Chemistry
Physical and Theoretical Chemistry
0210 nano-technology
Layer (electronics)
Phase diagram
Subjects
Details
- ISSN :
- 14351536 and 0303402X
- Volume :
- 298
- Database :
- OpenAIRE
- Journal :
- Colloid and Polymer Science
- Accession number :
- edsair.doi...........861d41f5363797bf97c4a02092945385