Back to Search Start Over

Reversible solid-state phase transitions in confined two-layer colloidal crystals

Authors :
Zhuoqiang Jia
Stephanie S. Lee
Stefano Sacanna
Alexandra Samper
Mena Youssef
Source :
Colloid and Polymer Science. 298:1611-1617
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Using a combination of fluorescence and bright-field optical imaging, the solid-state packing structures of semi-confined two-layer spherical colloidal crystals were observed during modulation of an external AC electric field. Upon increasing field strength, the bottom layer of colloids (layer 1) transitioned from the entropically favored hexagonal packing structure with p6m symmetry to a square-packing structure with p4m symmetry. The packing structure of layer 2 was determined by the packing structure of layer 1, with layer 2 particles resting in, and moving in registry with, the low-energy interstitial sites of layer 1. Modulation of the field strength thus resulted in a reversible transition between a face-centered cubic crystal structure and a body-centered cubic crystal structure at low and high field strengths, respectively. These structures were found to be sensitive to the particle density in the wells, with vacancies and insertions leading to the formation of mixed crystal phases at high field strengths.

Details

ISSN :
14351536 and 0303402X
Volume :
298
Database :
OpenAIRE
Journal :
Colloid and Polymer Science
Accession number :
edsair.doi...........861d41f5363797bf97c4a02092945385