Back to Search
Start Over
Numerical and experimental studies of temperature field characteristic inside an irregularly-shaped cavity of a space environment simulator system
- Source :
- Experimental Thermal and Fluid Science. 33:912-921
- Publication Year :
- 2009
- Publisher :
- Elsevier BV, 2009.
-
Abstract
- Numerical and experimental methods were used to explore temperature and pressure distributions inside an irregularly-shaped cavity of a novel three-dimensional space environment simulator (SES) system. In order to obtain better temperature and pressure distributions, a plenum chamber and airflow diffusion perforated plate were adopted. Three-dimensional heat and mass transfer characteristics were analyzed using the Standard k – e turbulence model. Simulation results revealed that the temperature and pressure distributions were greatly improved with improved diffusion configuration design, the temperature gradient decreased from 5 K to 1 K, and the pressure gradient decreased to 0.5% of the former value. Based on the simulation results, an improved experimental system for simulating space environment was set up. This experiment system could supply airflow with temperature ranging from 193 K to 353 K for simulating the real space environment. Experimental results showed that the temperature and pressure fields had smaller gradients across the surface and the inner cavity, which agreed considerably with the numerical results. The results of this study present useful information for the design of similar cavity structure.
Details
- ISSN :
- 08941777
- Volume :
- 33
- Database :
- OpenAIRE
- Journal :
- Experimental Thermal and Fluid Science
- Accession number :
- edsair.doi...........85d6047f5f2f5f6f83e7b095b13d0895