Back to Search Start Over

Benzimidazole-based dendritic nanofiltration membranes

Authors :
D. Nithya
D. Mohan
J.S. Beril Melbiah
Source :
Iranian Polymer Journal. 27:225-237
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

A dendritic-benzimidazole (D-BI) has been prepared using polyphosphoric acid (PPA) as a condensing medium with diaminobenzidine (DAB), 1,3,5-benzene tricarboxylic acid, and isophthalic acid as monomers. The structure of D-BI was ascertained by elemental analysis, FTIR, 1H NMR, and solid-state 13C-NMR. The D-BI was incorporated into polysulphone (PSf) by blending with polyvinylpyrrolidone (PVP K-30) as a macromolecular additive. The membranes were cast by phase inversion technique. The physical properties such as surface morphology and the chemical properties such as contact angle and the performance attributes, such as NOM rejection, salt rejection, and pure water flux were studied. It is imperative that the infusibility of rigid polymeric backbone is overcome by the introduction of polar moieties with no compromise on thermal stability. The membranes displayed substantial increase in thermal stability with D-BI content. The marginal increase in flux has been attributed to the branching and steric effect of D-BI. This is because the introduction of polar group efficiently affords to stabilize the adjacent aromatic rings. The salt rejection shows the order of MgSO4 ≈ Na2SO4 > MgCl2 > NaCl, which follows that the divalent ions are rejected more than monovalent ions. The antifouling behaviour was also significant as the irreversible fouling (RIr 9%), which was found to be minimal for D-BI-incorporated membrane. The blended membranes exhibited good hydrophilicity, antifouling, and fairly good rejection of salts.

Details

ISSN :
17355265 and 10261265
Volume :
27
Database :
OpenAIRE
Journal :
Iranian Polymer Journal
Accession number :
edsair.doi...........8586fd0cb7640edb0d3a5dd5759ead64