Back to Search
Start Over
Unsteady simulation of a 3.5 stage compressor using multi-frequency phase-lagged method
- Source :
- 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST).
- Publication Year :
- 2018
- Publisher :
- IEEE, 2018.
-
Abstract
- Multi-frequency phase-lagged boundary condition has the advantage of reducing the computational domain to one single blade passage per row in unsteady flow simulation of a multistage turbomachinery, which saves the requirement of computer memory and time. The first part of the paper presents the implementation process of this approach in CFD code to predict unsteady flow field in multi-stage turbo-machinery. Unsteady simulations and steady simulations are then performed on a 3.5 stage compressor. Compared with the steady results, the compressor performance predicted by unsteady calculation match much better with the experimental data. The flow field of neighboring blade passages per row in compressor appears different due to the unsteady interaction of rotor and stator. The blade surface pressure distribution of middle stators fluctuate in large amplitude especially at the trailing edge of the stator. The interaction between stator blades and forward shock wave of the downstream rotor under small axial gap is the key factor of stator blade pressure fluctuation.
- Subjects :
- Physics
Shock wave
020301 aerospace & aeronautics
Stator
Rotor (electric)
business.industry
02 engineering and technology
Mechanics
Computational fluid dynamics
01 natural sciences
010305 fluids & plasmas
law.invention
0203 mechanical engineering
law
0103 physical sciences
Turbomachinery
Trailing edge
Boundary value problem
business
Gas compressor
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST)
- Accession number :
- edsair.doi...........8549691529b53468aee3aae4c2333737