Back to Search
Start Over
Soil organic carbon depletion in global Mollisols regions and restoration by management practices: a review
- Source :
- Journal of Soils and Sediments. 20:1173-1181
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Mollisols are the most fertile, high-yielding soils in the world. During the past several decades, Mollisols have lost about 50% of their antecedent organic carbon (C) pool due to soil erosion, degradation, and other unsuitable human activities. Therefore, restoring soil organic C (SOC) to Mollisols via reasonable management is crucial to sustainable development and is important for environmental stability. However, the existing literature on SOC and soil quality has focused on one soil type or on a given region where Mollisols occur, and the degree of SOC depletion and stabilization in Mollisols have not been comprehensively evaluated. Overall, we propose to develop an optimum scheme for managing Mollisols, and we outline specific issues concerning SOC restoration and prevention of SOC depletion. In this review, we identify the uncertainties involved in analyses of SOC in Mollisols as related to management practices. According to the existing literature on SOC in Mollisols at the global scale, we analyzed the results of SOC depletion research to assess management practices and to estimate the C amount stabilized in Mollisols. The review shows that the SOC stocks in Mollisols in North America under cropped systems had 51 ± 4 (equiv. mass) Mg ha−1 in the top 30 cm soil layer. The SOC contents in Northeast China decreased from 52 to 24 g kg−1 (46%) after 150 years of cultivation management. All of the Mollisols regions in the world are facing the challenge of SOC loss, and this trend could have a negative influence on global climate change. Hence, it is very important to take proper measures to maintain and enhance organic C contents in Mollisols. We concluded that reasonable management practices, including no-tillage, manure and compost fertilization, crop straw returning, and mulching cultivation, are the recommended technologies. The C restoration in Mollisols is a truly win-win strategy for ensuring the security of food and soil resources while effectively mitigating global climate change. Thus, more attention should be given to protective management and land use for its impacts on SOC dynamics and soil properties in Mollisols regions.
- Subjects :
- Land use
Agroforestry
Stratigraphy
04 agricultural and veterinary sciences
Soil carbon
010501 environmental sciences
Soil type
01 natural sciences
Soil quality
Manure
Soil water
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
Environmental science
Mollisol
Mulch
0105 earth and related environmental sciences
Earth-Surface Processes
Subjects
Details
- ISSN :
- 16147480 and 14390108
- Volume :
- 20
- Database :
- OpenAIRE
- Journal :
- Journal of Soils and Sediments
- Accession number :
- edsair.doi...........8523f8114f5b506385a2deb15f28da96
- Full Text :
- https://doi.org/10.1007/s11368-019-02557-3