Back to Search Start Over

Hydrogen production by methanol reforming in a non-thermal atmospheric pressure microplasma reactor

Authors :
Ronald S. Besser
Peter J. Lindner
Source :
International Journal of Hydrogen Energy. 37:13338-13349
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

On board reforming of hydrocarbons for fuel cell feed has become an attractive research topic due to the low energy densities of batteries. The implementation of a microplasma as a means for reforming the liquid fuel methanol is explored in this work. Hydrocarbon reforming is commonly accomplished through catalysis, but catalysts have a number of limitations such as poisoning, coking, coarsening, long start-up times and excessive costs. Published studies have shown the viability of plasma reforming but none have succeeded in achieving suitable system efficiencies for portable applications. Non-thermal microplasmas are particularly attractive for reforming due to their extremely high electron and power densities and the scale of microplasma devices make them well suited for portable applications. This study describes experimental microplasma reactors reforming methanol. The reactors are based on the microhollow cathode discharge (MHCD) structure fabricated with microelectromechanical systems (MEMS) fabrication techniques. Through modeling the reaction for all five experiments, conversions within the microchannel were found to be nearly 100%. Despite the variations in the five experiments due to input electrical power, flow rate and concentration, the model was validated in each test. The experiments discussed in this work show the promise of a portable, non-thermal microplasma reformer that generates hydrogen for fuel cells for portable power.

Details

ISSN :
03603199
Volume :
37
Database :
OpenAIRE
Journal :
International Journal of Hydrogen Energy
Accession number :
edsair.doi...........8431297e7d806f23f0310a6eb6597fa3