Back to Search Start Over

Li4.3AlS3.3Cl0.7: A Sulfide-Chloride Lithium Ion Conductor with a Highly Disordered Structure

Authors :
Frédéric Blanc
Matthew J. Rosseinsky
Matthew S. Dyer
Andrij Vasylenko
Benjamin B. Duff
John B. Claridge
Michael W. Gaultois
Luke M. Daniels
Jacinthe Gamon
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Mixed anion materials and anion doping are very promising strategies to improve solid-state electrolyte properties by enabling an optimized balance between good electrochemical stability and high ionic conductivity. In this work, we present the discovery of a novel lithium aluminum sulfide-chloride phase. The structure is strongly affected by the presence of chloride anions on the sulfur site, as this stabilizes a higher symmetry phase presenting a large degree of cationic site disorder, as well as disordered octahedral lithium vacancies, in comparison with Li-Al-S ternaries. The effect of disorder on the lithium conductivity properties was assessed by a combined experimental-theoretical approach. In particular, the conductivity is increased by a factor 103 compared to the pure sulfide phases. Although it remains moderate (10−6 S·cm-1), Ab Initio Molecular Dynamics and Maximum Entropy (applied to neutron diffraction data) methods show that disorder leads to a 3D diffusion pathway, where Li atoms move thanks to a concerted mechanism. An understanding of the structure-property relationships is developed to determine the limiting factor governing lithium ion conductivity. This analysis, added to the strong step forward obtained in the determination of the dimensionality of diffusion paves the way for accessing even higher conductivity in materials comprising an hcp anion arrangement.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........829174134db31873ebd5c5d4221e21ab