Back to Search Start Over

Hybrid Organic−Inorganic Solids That Show Shape Selectivity

Authors :
Mark E. Davis
Manuel Moliner
Yuriy Román-Leshkov
Source :
Chemistry of Materials. 22:2646-2652
Publication Year :
2010
Publisher :
American Chemical Society (ACS), 2010.

Abstract

Hybrid organic−inorganic solids featuring millimolar/gram concentrations of intracrystalline organic moieties and shape-selectivity are synthesized. Pure-silica zeolite beta crystals are coated with zirconia and treated in aqueous sodium hydroxide to create defects and mesoporosity within the crystalline structure. Aminopropyl organic groups are subsequently grafted onto the generated intracrystalline silanol groups. After grafting, characterization data indicate a high organic concentration localized primarily within the intracrystalline voids. Specifically, thermogravimetric analysis shows an organic loading of 0.7 mmol of NH_2/g, ^(29)Si solid-state nuclear magnetic resonance (NMR) spectra display a quantitative decrease in Q^3 silicon atoms with a corresponding resharpening of the Q^4 resonances, and N_2 adsorption data show a decrease in micropore volume to 0.10 cm^3/g. Knoevenagel condensation reactions are catalyzed by the aminopropyl-functionalized materials using differently sized aldehydes and the results show that the zirconia-protected functionalized solid have shape selective properties.

Details

ISSN :
15205002 and 08974756
Volume :
22
Database :
OpenAIRE
Journal :
Chemistry of Materials
Accession number :
edsair.doi...........8263c7cd99eba19cc14ac5cc1401abd4
Full Text :
https://doi.org/10.1021/cm100108e